

High CE technology for HVM EUV source

Hakaru Mizoguchi

400 Yokokura shinden, Oyama, Tochigi, Japan

EUV Symposium 2012 –Oct.1-4.2012 Brussel

> ETS 2009-2010

> 10Hz device 2010-

> Proto-1 2011

> Proto-2 2012

> Real-pilot 2013 -

> ETS

2009-2010

Max power

50W(Clean power @IF,duty2%)

• 7hour operation

20W(Clean power @IF,duty5%)

Debris mitigation

2010-

> 10Hz device

> Proto-1

2011

> Proto-2

2012

> Real-pilot

2013 -

[■] Copyright 2012 GIGAPHOTON INC. all rights reserved.

System operation Data (ETS device)

	SPIE 2010	EUV Symposium	SPIE2011
	(Feb.2010)	(Oct.2010)	(Feb,2011)
EUV power (@ I/F)	69 W	104 W	42 W
EUV power (clean @ I/F)	33 W 50 W		20 W
Duty cycle	20 %	20 %	5%
Max. non stop op. time	>1 hr	<1 hr	>7 hr
Average CE	2.3 %	2.5 %	2.1%
Dose stability :simulation	(+/- 0.15%)		-
Droplet diameter	60mm	60mm	30mm
CO ₂ laser power	5.6 kW	7.9 kW	3.6kW

> ETS 2009-2010

Max power7hour operation50W(Clean power @IF,duty2%20W(Clean power @IF,duty5%

Debris mitigation

> 10Hz device 2010-

Found out high CE operation condition

Magnetic mitigation concept proven

> Proto-1 2011

> Proto-2 2012

> Real-pilot 2013 -

Challenge for CE higher than 5%

3 key challenges Small droplet supply with Droplet on Demand Dual wavelength Laser Produced Plasma Perfect ionization and Magnetic mitigation pre-pulse laser CO₂ laser Pre-pulse main-pulse

Stable and small droplet
 high power CO₂ laser
 the best plasma creation

Technology update: CE improvement

4.7%av. -- highest CE reported to date was demonstrated

Data taken with low rep rate device at 2Hz

Technology update: Mist shape after pre-pulse

- > The mist shape with pico second pre-pulse is different from the one with nano second pre-pulse
 - √ ps: dome / ns: thin disk or ring
- > This could be a major reason of high CE

	10 ps		10 ns	
Pulse energy	2.0 mJ		2.7 mJ	
delay	1 μs	2 μs	1 μs	2 μs
60 deg view				
90 deg view				

Simulation of ns pre-pulse irradiated target

Technology update: High CE enabled by Prepulse optimization

> CE= 4.7% (average) was demonstrated by pre-pulse optimization

Mechanism of high CE and short pre-pulse duration is still under investigation

EUV conversion efficiency (solid target)

We found Tin + CO2 laser could be around 4% efficiency in 2008.

Dr.Sunahara

Simulation work cooperated with Osaka university

> ETS 2009-2010

Max power7hour operation50W(Clean power @IF,duty2%)20W(Clean power @IF,duty5%)

Debris mitigation

> 10Hz device 2010-

Found out high CE operation condition

Magnetic mitigation concept proven

> Proto-1 2011

✓ Challenge for commercially available Proto-type

✓ Engineering challenges are found out

• Challenge 1: Long-term stability of droplet generator

• Challenge 2: CO2 laser power

> Proto-2 2012

> Real-pilot 2013 -

GL200E proto constructed at Hiratsuka facility

Maximum 7W clean power at Proto system

> EUV light generated at Proto system

> ETS 2009-2010

Max power7hour operation50W(Clean power @IF,duty2%)20W(Clean power @IF,duty5%)

Debris mitigation

> 10Hz device 2010-

Found out high CE operation condition

Magnetic mitigation concept proven

> Proto-1 2011

- Proto-2
 2012
 - √ Concentrate on solving Key technologies
 - √ Improve above two challenges
 - 50W stable operation during 1 week
 - Prove Maintainability and Availability
- > Real-pilot 2013 -

Technology update: PROTO-2

- > Target
 - 1. Improvement of component technology
 - Newly designed "On Demand" droplet generator
 - Slab and Fast Axial Flow CO2 laser improvement
 - 2. Stabilized EUV chamber
 - 3. EUV 50W clean power & One week stable operation.

Droplet on Demand

Large controllability of droplet

Droplet	Pressure	Voltage		
Parameters		Pulling	Accelerator	Deflector
Droplet size	V	V		
Timing		V		
Speed			V	
Direction X,Y				V

Droplet on demand has an extensive capability to control all major key parameters

Technology update: Droplet Generator

- Short term position stability is improved
- Droplet position is stable (<+/-10um) over period of fast frame camera measurement range (14 msec)]
- New shape nozzle performance meets design targets for shooting control

2nd gen. high power pulsed CO2 laser system

• 1st gen. laser system

- 2nd gen. laser system
 - Compact: footprint -> <50%
 - Efficient: plug in eff. x2
 - Higher power: 10kW-> 20kW

High power driver CO₂ laser Unit

Final target

Power target: 23kW

Repetition rate: 100kHz

Pulse duration:15ns

Technology update: CO₂ laser

(Slab CO₂ + FAF CO₂ AMP. system)

- ▶ kW level global self-oscillation was improved to 50 W level. As a result, CO₂ power was improved from 6.5 kW to 8.5 kW.
- > 10 kW power will be achieved by the following items.
 - ✓ Power improvement by optimization of gas exchange
 - ✓ Power improvement by input beam shape optimization
 - ✓ Multiline amplification.

EUV Output Power vs. CO2 Input Power

➤ We expect 2.5mJ EUV output corresponds to 250W clean power with CE >4.7%

> ETS 2009-2010

Max power7hour operation50W(Clean power @IF,duty2%)20W(Clean power @IF,duty5%)

Debris mitigation

> 10Hz device 2010-

Found out high CE operation condition

Magnetic mitigation concept proven

> Proto-1 2011

✓ Challenge for commercially available Proto-type

✓ Engineering challenges are found out

Challenge 1: Long-term stability of droplet generator

• Challenge 2: CO2 laser power

> Proto-2 2012

✓ Concentrate on solving Key technologies

✓ Improve above two challenges

• 50W stable operation during 1 week

Prove Maintainability and Availability

Real-pilot 2013 -

√ Restart product development

√ Integration test at customer site

GL200E system (Real Pilot) overview

Development schedule overview 2012-2013

New Amplifier Development Project

(poster **P-SO-04**)

Target: 40kW driver laser for future 500W EUV source with >500W

- ➤ Concept: Minimize electric consumption of driver laser system by using superior high efficiency transverse flow CO₂ laser technology.
- ➤ Scheme: Lead by Mitsubishi electric

with technical support by Gigaphoton and funding support by NEDO

Summary

- 1st generation integrated setup LPP source (ETS) and 10 Hz device:
 - 10Hz experiment clarify CE (Conversion Efficiency) improvement, with <20µm droplet we found the region where CE 4.7% average with pico second prepulse, and perfect vaporization are simultaneously possible.
- 2st generation LPP source (GL200E):
 - Proto-1, we observed 1st EUV light with 18W equivalent power (2011).
 - During proto-1 experiment we face two technical issues on DLG and CO2 laser. We changed the direction to solve these technical issues at first.
 - We developing Proto-2nd phase machine before commercialize the EUV source. The concept of the machine is reported.
 - Droplet generator improvement is going on. Short term stability is in spec.
 - CO2 laser achieved 8.5kW operation with 75% duty.
 - Proto-2 target is 50W level one week operation demonstration by 1Q 2013.
- New amplifier development project started co-operation with Mitsubishi electric.
- We acknowledge EUV source development funding partial support by **NEDO**.
- Copyright 2012 GIGAPHOTON INC. all rights reserved.

Gigaphoton's Source make the End of the EUV Tunnel!

Thank you for your attention!